Robust Control Examples Applied to a Wind Turbine Simulated Model
نویسندگان
چکیده
Wind turbine plants are complex dynamic and uncertain processes driven by stochastic inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal, and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both modelling and control become challenging problems. On one hand, high–fidelity simulators should contain different parameters and variables in order to accurately describe the main dynamic system behaviour. Therefore, the development of modelling and control for wind turbine systems should consider these complexity aspects. On the other hand, these control solutions have to include the main wind turbine dynamic characteristics without becoming too complicated. The main point of this paper is thus to provide two practical examples of development of robust control strategies when applied to a simulated wind turbine plant. Experiments with the wind turbine simulator and the Monte–Carlo tools represent the instruments for assessing the robustness and reliability aspects of the developed control methodologies when the model–reality mismatch and measurement errors are also considered. Advantages and drawbacks of these regulation methods are also highlighted with respect to different control strategies via proper performance metrics.
منابع مشابه
Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملDifferent Types of Pitch Angle Control Strategies Used in Wind Turbine System Applications
The most common controller in wind turbine is the blade pitch angle control in order to get the desired power. Controlling the pitch angle in wind turbines has a direct impact on the dynamic performance of the machine and fluctuations in the power systems. Due to constant changes in wind speed, the wind turbines are of nonlinear and multivariate system. The design of a controller that can ad...
متن کاملModeling and Neuro-fuzzy Controller Design of a Wind Turbine in Full-load Region Based on Operational Data
In this paper, dynamic modeling of a Vestas 660 kW wind turbine and its validation are performed based on operational data extracted from Eoun-Ebn-Ali wind farm in Tabriz, Iran. The operational data show that the turbine under study, with a classical PI controller, encounters high fluctuations when controlling the output power at its rated value. The turbine modeling is performed by deriving th...
متن کاملApplication of STATCOM and CROWBAR for Transient Stability Improvement and Performance Enhancement for A Wind Turbine Based Doubly Fed Induction Generator
This paper presents a robust control of Doubly Fed Induction Generator (DFIG) wind turbine in a sample power system. DFIG consists of a common induction generator with slip ring and a partial scale power electronic converter. Indirect fieldoriented controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. On grid side PQ control scheme is app...
متن کاملA μ-synthesis approach to robust control of a wind turbine
The problem of robust control of a wind turbine is considered in this paper. A set of controllers are designed based on a 2 degrees of freedom linearized model of a wind turbine. An extended Kalman filter is used to estimate effective wind speed and the estimated wind speed is used to find the operating point of the wind turbine. Due to imprecise wind speed estimation, uncertainty in the obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017